IoT goes deep

Arm is taking its recently-announced Project Trillium a step further with a collaboration with NVIDIA. The partners will bring the open-source NVIDIA Deep Learning Accelerator (NVDLA) architecture into Project Trillium platform for machine learning.

The move will bring deep learning inferencing to billions of mobile, consumer electronics and Internet of Things (IoT) devices. It will make it simple for IoT chip companies to integrate AI into their designs and help put intelligent, affordable products into the hands of consumers worldwide.

“Inferencing will become a core capability of every IoT device in the future. Our partnership with Arm will help drive this wave of adoption by making it easy for hundreds of chip companies to incorporate deep learning technology,” said said Deepu Talla, Vice President and General Manager of Autonomous Machines at NVIDIA.

“Accelerating AI at the edge is critical in enabling Arm’s vision of connecting a trillion IoT devices. Today we are one step closer to that vision by incorporating NVDLA into the Arm Project Trillium platform, as our entire ecosystem will immediately benefit from the expertise and capabilities our two companies bring in AI and IoT,” said  Rene Haas, Executive Vice President and President of the IP Group at Arm.

Based on NVIDIA Xavier, the world’s most powerful autonomous machine system on a chip, NVDLA is a free, open architecture to promote a standard way to design deep learning inference accelerators. NVDLA’s modular architecture is scalable, highly configurable and designed to simplify integration and portability.

NVDLA brings a host of benefits that speed the adoption of deep learning inference. It is supported by NVIDIA’s suite of powerful developer tools, including upcoming versions of TensorRT, a programmable deep learning accelerator. The open-source design allows for cutting-edge features to be added regularly, including contributions from the research community.

The integration of NVDLA with Project Trillium will give deep learning developers the highest levels of performance as they leverage Arm’s flexibility and scalability across the wide range of IoT devices.

“This is a win/win for IoT, mobile and embedded chip companies looking to design accelerated AI inferencing solutions. NVIDIA is the clear leader in ML training and Arm is the leader in IoT end points, so it makes a lot of sense for them to partner on IP,” said Karl Freund, Lead Analyst for Deep Learning at Moor Insights & Strategy.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.